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FOREWORD

The research on which this report is based was performed by the authors,
Mr, R. J. Vidal, Mr. J. H. Hilton, and Dr. J. T. Curtis of the Aerodynamic
Research Department of Cornell Aeronautical Laboratory, Inc., Buffalo, New
York, under Army Contract DA L44-177-TC-439, Project Number 9-38-01-000, ST902.
The Transportation Corps., U. S. Army Transportation Research Command, Fort
Eustis, Virginia, is the monitoring agency. This work represents a part of a
research program, still in progress, which is devoted to investigations of
several specific problems associated with STOL/VTOL flight, as well as more
general research on the aerodynamics of low speed flight. This report is one

of a series to be published covering the entire program of research.
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ABSTRACT

The available theories for two-dimensional airfoils in uniform and non-
uniform shear flows of infinite extent are reviewed, and an image analysis is
presented to maske these results applicable to shear flows of finite extent.
Experiments with a two-dimensional symmetrical Joukowsky airfoil in uniform
shear flow and in simulated two-dimensional propeller slipstreams are described,
and the results are compared with the applicable theory. It is found that the
airfoil section characteristics can be predicted with good accuracy at all

positions tested in the slipstream.
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INTRODUCTION

The effect of a propeller slipstream interacting with a wing is a classical
problem which has been present since the introduction of the airplane. The
propeller-driven aircraft has, with few exceptions, evolved intoc a tractor con-
figuration with the propeller situated ahead of the lifting surfaces, and portions
of these surfaces are then subjected to a high velocity slipstream. BHence in
calculating the wing characteristics, one should allow for the fact that the wing
is acted upon by a non-uniform stream; that is, the uniform free stream with the
superimposed non-uniform propeller slipstream,

This problem has been the subject of theoretical research for a number of
years. One of the earliest efforts was that of Koningl in 1934, in which the
slipstream was taken to be uniform and with a velocity slightly larger than that
of the free stream. These results were subsequently extended by Graham, Lagerstrom,

>

Licher, and Beane2 to allow for larger slipstream velocities, and by Rethorst” to
include a more realistic model of the slipstream boundary. In all these cases the
slipstream is assumed to have no gradients of velocity. It is tacitly assumed
that the influence of slipstream velocity gradients on wing lift is small in com-
parison with the gross effects of the high velocity jet interacting with the wing.
'I‘sienl+ in 1943 investigated the influence of vertical gradients of velocity
on a thick symmetric profile. In that research a two-dimensional model in a
stream with a linear velocity gradient was considered, and it was found that
because of the interaction of the gradients with the wing thickness, the wing
characteristics were substantially different from those obtained in uniform flow.
This early result was subsequently augmented in an investigation by von Karman

5

and Tsien” in which Prandtl lifting line theory was reformulated for a flow with




spanwise gradients of velocity. As noted in that paper, the complete solution

of a wing in non-uniform flow with both spanwise and vertical gradients of velocity
requires a complete knowledge of the section characteristics including the effects
of vertical gradients of velocity. The use of these characteristics in the Karman-
Tsien lifting line theory would enable one to treat the complete problem.

The Cornell Aeronautical Laboratory has been conducting a program of research
on the aerodynamics of STOL/VTOL configurations. Included in this program is
research on the influence of vertical gradients of stream velocity on the section
characteristics of thick airfoils. The first part of this investigation was
devoted to an extension of Tsien"s’(:heoryl+ for symmetric Joukowsky sections to
include camber6, and was undertaken to provide a basis for calculating the aero-
dynamics of the highly flapped wings, or alternatively higﬁly cambered wings,
characteristic of vectored slipstream configurations. This research was continued
in experimental investigations of two-dimensional airfoil characteristics in two-
dimensional propeller-like slipstreams. The purpose of this report is to present
the results of the experimental research and to present methods for applying
Sowyrda's6 theory in determining section characteristics. In this connection,
the first section is devoted to a review of the applicable theories for airfoils
in flows with linear and non-linear vertical gradients of velocity. The second
section presents the experimental results and compares them with the appropriate

theory.
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THEORY

Considering the slipstream of an unyawed propeller, the important features,

as regards its interactions with a wing, are that the longitudinal velocity distri-

bution is axially symmetric, and it is roughly V-shaped as indicated in Figure 1.

Figure 1 TYPICAL SLIPSTREAM VELOCITY DISTRIBUTION

In addition there is a rotational velocity component which is axially asymmetric

and a function only of radial position. In anticipation of a final lifting line

development, the rotational velocity component can be neglected in determining

airfoil section characteristics since this component will only alter the section

angle of attack.

line development.

This component must of course be included in the final lifting

e e




Referring to Fig. 1, it can be seen that there are three important slip-
stream features to be considered. In the immediate vicinity of the slipstream
axis, the velocity distribution is markedly nonlinear, a region of non-uniform
shear. Farther out in the slipstream the velocity distribution is approximately
linear, a region of uniform shear. Now if the influence of the slipstream boundary
could be neglected, one might expect that non-uniform shear theory would apply in
the vicinity of the slipstream axis, and uniform shear theory might be valid
further out in the slipstream, The third important effect, slipstream boundary
interference, can be included using an appropriate image analysis. The theory
for each of these items will be reviewed in the rest of this section.

Uniform Shear

As noted in the Introduction, the two-dimensional theory for thick
Joukowsky profiles in uniform shear was reported by Tsienq, and was subsequently
extended by Sowyrda6 to profiles with camber, The important aspects and the
results of these theories will be reviewed here; the details of the development

can be obtained in the original references.

Figure 2 AIRFOIL AND SHEAR STREAM SYSTEM




Consider the model shown in Fig. 2 with the remote stream velocity given
by U= Uo(/+k K-@), where U is the undisturbed velocity at the positioen, rg« d
above the airfoil midchord position, U, 1is the undisturbed velocity at the air-
foil midchord position, k is the shear parameter defining the linear velocity
gradient, and .« 1is the airfoil reference chord length., The important feature
of this flow is that at locations far upstream of the airfoil, the vorticity is
constant throughout the stream. Now since it is assumed that the flow is inviscid
and incompressible, it follows that the vorticity must be everywhere the same
throughout the entire flow field.

In writing down the stream function for the undisturbed flow and super-
imposing a disturbance stream function to describe the entire flow field, it is
found that because the vorticity is everywhere the same, the disturbance stream
function satisfies Laplace's equation. Therefore, any solution to Laplace's
equation, combined with the stream function for the undisturbed flow and subject
to the appropriate boundary conditions, will yield a solution to the airfoil
problem., The boundary conditions are that there be no flow through the airfoil,
that the Kutta condition be satiéfied at the airfoil trailing edge, and that the
airfoil disturbances vanish at infinity.

Since Laplace's equation holds for the problem, the powerful Joukowsky
transformation can be applied, subject to certain restrictions. This allows
one to obtain an exact potential solution to the problem, including the effects
of thickness and camber, The exact results for the 1ift and pitching moment
about the airfoil midchord are given in Refs. 4 and 6 as a function of the stream
shear, k , and the airfoil shape parameters. The drag on the airfoil is iden-
tically zero, since it is a two-dimensionél closed body in uniform shearq’6

subject to no spanwise velocity variations. Considerable insight into the




effects of stream shear on the airfoil characteristics can be obtained by special-
izing the results -of Ref. 6 to the case of small airfoil thickness and camber.

The airfoil maximum thickness and camber, to the second order in the airfoil shape

parameters, are given by

v e th = a,(l+a,) €1
hle = - 222 (2)

where € is the maximum thickness, h  is the maximum height of the airfoil
camber line, and @, and 6, are airfoil shape parameters defined in Ref. 6,
The 1ift coefficient and moment coefficient about the airfoil midchord are, to

the first order in thickness and camber

L - rk* ™k ;
CL-_-quo&ul}+r+32 ]Zﬂoc+27/[':+"+2%(/+ 32):' (3)
M rk*| o k
Cn = Zruies ”[”'”16 ] z %t Te% "

where a positive pitching moment is a stalling moment.

Equations (3) and (4) show that the effect of shear is to cause a small
increase in the slope of the 1ift and moment curves determined by the stream
shear and the airfoil thickness. More important, there is an overall increase
in the lift and moment. This overall increase in 1lift is proportional to the
shear and the airfoil thickness and camber, while the overall increase in moment
is a function only of the shear and thickness. 1In addition it will be noted in

Eq. (3) that the thickness and camber interactions with the shear are super-




imposed. This is true for thin airfoils with small camber. However, the exact
theory shows that in addition there is a coupling between thickness and camber
which also increases the lift. For certain values of the shear, it is found
that this coupling effect is as large as the thickness effect and the camber
effect6.

In order to have a physical feel for the magnitude of each of these shear
interactions, consider a 17% thick airfoil with 11% camber in a shear flow de-
fined by k = 5. This corresponds to about the steepest velocity gri lient
found in a propeller slipstream. In Ref. 6 it is shown that at zero angle of
attack, the lift obtained with no shear is €, ~ 1.6, while with k = 5,
the 1lift is CL ~ 4.9, This increment in 1ift of AC,_ ~ 3.3 is due
to a pure thickness effect, a pure camber effect, and a coupling of thickness
and camber effects. Calculations indicate that for this particular combination
of shear and airfoil parameters, each of these three effects is roughly the

same .

Non-Uniform Shear

Some insight into the influence of non-uniform shear flows on airfoil
section characteristics can be obtained from the two-dimensional investigations
made by Jones7’8. In Ref. 7, Jones considers a thin cambered airfoil in a
flow with a parabolic velocity distribution given by U =U, E+ 87,(%)2] ’
where U is the undisturbed stream velocity at a height, ﬁf s above the plane
of flow symmetry, U, is the undisturbed stream velocity in the plane of flow
symmetry, and 7, is a constant defining the non-uniform shear. In contrast to

the uniform shear flow just described, this undisturbed flow is characterized by

a stream vorticity which is not constant, but varies between streamlines. From




Helmholtz's law for the rate of change of vorticity in a fluid, it is known that
the vorticity must be conserved along a streamline, implying that the disturbance
stream function for a profile in this flcw satisfies the flow equation,

Vz‘/J, = F(P) . This then leads to the requirement that the disturbance stream

function satisfy the flow equation

I

Vi = (B ¥8)-F(B) o

where y; is the stream function of the undisturbed stream.

The fundamental difficulty in treating non-uniform shear flows is apparent
by comparing Eq. (5) with its counterpart in uniform shear flow. In uniform
shear flow it is necessary that the disturbance stream function satisfy Laplace's
equation, which then allows one to employ conformal transformation techniques.
Such is not the case in non-uniform shear flows, and one must employ other methcds.

Jones obtains approximate solutions for the 1lift, drag, and pitching moment
of a slightly cambered thin airfoil in non-uniform shear flow by assuming the
airfoil thickness is small and by assuming that 8? <—;t)24<l « Through a separ-
ation of variables, Jones reduces the problem to a pair of Mathieu differential
equations which are solved subject to the same boundary conditions employed in
the uniform shear development. His results for the lift and moment about the

midchord position are, to the first order in of and 7-(%) 3

L
C‘_ z W;%ZWI?/*—/.//@ f)oc-f-z%] (6)
M e :
CM—WN 20(. /*‘.866?] (7




where U, is the undisturbed stream velocity at the airfoil midchord position.
To the same approximation, the corresponding results in uniform shear flow are the

usual thin airfoil results.

i

2h
C. o= 2m (o + = ®)

Cy = 2= (9)

It is first noted in Egs. 3 and 4 that for uniform shear, if the product of the
airfoil thickness and shear parameter is neglected and if the shear is assumed
small, the theory reduces to uniform flow theory, and there is no effect of shear.
Comparing these with Egs. 6 and 7, it then appears that Jones, in stipulating
small airfoil thickness and, in essence, small shear, loses the shear effect on
1ift and moment which Ref. 6 shows to be associated with thickness and camber.
However, Jones demonstrates that one effect of shear is to increase the slope of
the 1lift and moment curves. Moreover, these increases do not depend on the local
shear, i_ —;{: , but rather on the derivative of shear, 7. « This result then
indicates that for a wing in a propeller slipstream near the axis of symmetry,
the 1ift and moment curves would exhibit higher slopes in proportion to ?, ]
the first derivative of shear or the second derivative of the velocity,

Jones, in his subsequent investigation,8 treated. profiles of elliptic cross
section in a stream with a velocity distribution given by U =Y, cmm(»(?fk) .
where { is an arbitrary reference length. This problem is analogous to the one
just described in that the stream vorticity is not constant but varies from stream-
line to streamline. The development of the flow equation follows that for the
cambered thin airfoil to the point where the three boundary conditions are applied.

For the elliptic profile, the Kutta condition is not applicable because there is

9




no sharp trailing edge. Consequently, there is no boundary condition fixing the
¢irculation about the profile.

In order to fix the circulation, Jones makes the assumption that the circu-
lation around the profile is identically that around the same contour in the
undisturbed stream., This is the same assumption used by Tsienh in treating a
circular cylinder in uniform shear flow, and by Murray and Mitchell9 in treating
a circular cylinder in non-uniform shear flow. This condition is correct for
uniform shear flows since it follows frcm the fact that the vorticity is everywhere
the same in a disturbed uniform shear flow. However, for non-uniform shear flows,
the applicability of this boundary condition is open to question since the vorti-
city varies between streamlines.

Jones determines the 1lift and moment for an ellipse of any thickness in a
stream of small non-uniform shear. To the first order in thickness and the second

order in angle of attack, his results for the lift are

L
Co=mmame =2 ke (Y 10)

where kz is the undisturbed stream shear at the airfoil position, the local
shear. The comparable approximation for the 1lift in uniform shear is

Now Jones' result for non-uniform shear, Eq. (10), shows that in the limit of
k =0 s, & uniform stream, there is no 1lift on the elliptic profile regardless
of angle of attack. This might be anticipated since the profile lacks a sharp

trailing edge. Considering the zero angle of attack condition with shear, Egs.

10




(10) and (11) are seen to yield equivalent predictions for the 1lift increment due
to shear if for the non-uniform shear flow the local shear is used. This suggests
that in non-uniform shear flows, the lift increment due to shear could be predicted
on the basis of uniform shear theory.

The fact thét Jones' result for the elliptic profile does Aot yield a 1lift
curve slope that agrees with either uniform shear theory, or more important, his
result for a thin airfoil in non-uniform shear, is interesting. It seems plausible
that this is associated with the lack of a sharp trailing edge on the elliptic
profile, and that his result for the thin cambered plate is the better description
of airfoil 1ift curve slope in non-uniform shear flow. Since this result does not
allow for thickness effects, the question remains as to how to account for it in
non-uniform shear, though one might intuitively expect that it would be the uniform
shear result, superimposed on the thin airfoil result.

Slipstream Boundary Interference

It can be expected from the theory for a uniform two-dimensional slipstreamlo
that, in general, the characteristics of an airfoil immersed in any slipstream
will be different from those in a flow without the discontinuity. These changes
stem from the fact that there can be no flow through the boundary and, for practi-
cal purposes, the pressure on both sides of the boundary must be equal to the
ambient stream pressure. In the case of a uniform slipstream, the two-dimensional
slipstream boundary effects can be calculated by considering the combined effects
of two equivalert systems of airfoils. COne system consists of the actual airfoil
and an array of images in a uniform stream with a velocity equal to that of the
slipstream, By suitably arranging the image spacing and strength, this system
duplicates the disturbance velocities inside the slipstream. The other system

consists of an equivalent or effective airfoil in a uniform stream with a velocity

11




equal to that of the external stream. The strength of this equivalent airfoil is
adjusted so that it duplicates the disturbance velocities external to the slipstream.
In these systems the airfoil parameters and the image spacing are adjusted so that
the pressure and flow continuity requirements are satisfied at the slipstream
boundary, and the disturbance velocities at the original airfoil are calculated
using the system of image airfoils. In this calculation it is usually assumed
that the volume effect stemming from airfoil thickness is negligibly small, and
only the effects associated with 1lift are considered.

An analogous image analysis for airfoils in two-dimensional non-uniform
slipstreams can be derived by employing certain assumptions. In this analysis
the first order effects of both 1lift and airfoil thickness will be considered,
and it will be assumed that the theory for Joulzowsky airfoils in uniform shear
flows is adequate for establishing the flow model.

Considering symmetrical airfoils, the disturbance stream function for a
Joukowsky section in uniform shear flow is, to the first order in thickness and

angle of attacqu

Y =2yic bnr +7’;(0C1CN/6-@,A(.”U6)-'IT[(“W29— %MZG) (12)

where r and 6 are defined in Fig. 2. Equation (12) shows that in this
approximation, the lift and thickness effects are independent, and the disturbance

stream function can be taken to be

¥, = ¥ () + ¥ (@) (13)

12




Moreover, it is seen that to this order of approximation, the stream function is
independent of the shear parameter, k s So that in calculating the boundary
interference, the image system need not simulate the stream shear so long as the
correct wing lift is used and the actual stream velocities are used in satisfying
conditions at the slipstream boundary. Accordingly, the disturbance velocities
inside the slipstream can be calculated using an image system, shown in Fig. 3,

consisting of a pair of images described by the stream function,
Y, =y e -3, ¥ (@,) (14)

and the array of their repeated reflections in a uniform stream of velocity, U, .
Similarly, the disturbance velocities outside the slipstream can be calculated

using the equivalent system of a wing, described by the stream function,
1 ]
Y=o ¥+ ¥ (@) (15)

in a uniform stream of velocity, U' .
The conditions to be satisfied at the slipstream boundary are that the
pressure be continuous across the boundary and that there be no flow through

the boundary. The latter condition requires that

“ e - ‘“’"Z’
U+ wry. U+ (e

where A, and «, are the disturbance velocities in the # and %k

L4

direction, respectively, the prime denotes conditions just outside the boundary,

and the subscript, € , denotes conditions just inside the boundary. Assuming

13
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the disturbance velocities are small in comparison with the freestream and slip-
stream velocities, Eq. (16) can be expanded in terms of the disturbance velocities

to yield the first order boundary condition.

A
u% & u% (17)
e

The condition that the pressure be constant across the boundary is obtained by
applying Bernoulli's equation on both sides of the boundary and by expanding these
relations in terms of the disturbance velocities to obtain the first order boundary

condition,
S e & (18)

The boundary conditions, Eq. (17) and (18), are to be satisfied by calculating
the disturbance velocities at the boundaries from the original wing and its image
system, Fig. 3C, and by calculating the disturbance velocities at the boundaries
from the equivalent system, Fig. 3b, and using these in the boundary conditions
to determine the constants, z/,_ y Y 9 ;)L' 5 and ;lrl « These constants fix the
lift and the thickness of the images and the equivalent wing, and if these are
such as to satisfy the boundary conditions, the image system duplicates the effects
of the slipstream boundary. It can then be used to calculate the disturbance
velocities at the original airfoil position due to the presence of the slipstream
boundary.

Using a suitable model for the lifting wing with thickness, the slipstream
boundary effects can be calculated. Tsien's model (Eq. 12) could be employed in

this calculation; however, because this model consists of only a vortex, a pair

15




of dipoles, and a pair of quadripoles, it breaks down in regions close to the air-
foil. Instead,the model used here will be a source and sink model with a length
equal to the airfoil chord to simulate the effects of airfoil thickness, and a
single vortex located at the airfoil quarter chord to simulate the effects of

airfoil lift. The disturbance stream functions for each of these models are

¥, )= 47—/’;“;- dn (e %) (19)
= 2
V’: @,) = ﬁ‘ Zan (g T, yz’i s") (20)

where A is the strength of the source and sink, $ is their spacing, and
E = % - -% « In order to be consistent with the preceding development,
it is assumed that the airfoil thickness ratio is small so that only the first
order thickness terms are retained. With this approximation the disturbance

velocities from the images follow

% il 217';(/, 'x’:fy“ e
5% AN _2»',’;% 4;“:‘72 2
By fe) = e {E zé:j;j;}j?/f);%z (23)
5%_%(“‘) _ U.,;zr Ez+7‘-i/t)‘]'+7"°z (24)

The question arises as to where on the airfoil the corrections to be ob-

tained with Egs. (21~-2k) are to be applied. The form of the relations demonstrates

16




that the effect of the boundary is to subject the airfoil to a disturbance field
which varies along the chord. Hence, the airfecil is in a curved flow field, or
equivalently, the airfoil characteristics will be those of a cambered section.
There are a number of techniques normally employed to account for this variation.
In particular, the lift is taken to be known and the angle of attack is to be
obtained. One could average the appropriate relations to obtain the average
longitudinal disturbance velocity, an average angle of attack correction, and an
average camber or flow curvature correction. The method used here to account for
the lateral component of the disturbance velocity is that originated by Pistolesi11
and used in the Weissinger lifting line theorylz. It is shown that for two-dimen-
sional thin wings with circular arc camber, the wing characteristics are predicted
exactly if the wing boundary conditions are satisfied at the 75% chord station,
The use of this criterion in the present problem is equivalent to assuming that
the flow curvature at the wing has a constant radius of curvature.

With regard to the longitudinal component of the disturbance velocity, it
is noted that a weighted average value should be used. It is assumed here that
this average value can be approximated with the disturbance velocity at the air-
foil quarter chord.

Returning to the application of the boundary conditions at the slipstream
edge, these are applied by calculating the disturbance velocities at the slip-
stream boundary using Eqs, (21-24), the image system (Fig. 3c), and the equivalent
wing (Fig. 3b). These disturbance velocities must then satisfy Eqs. (17) and (18).
After some aléebraic manipulations it follows that the boundary conditions are

2
%, i (_g_el-> i Ue
LT ek, (_‘(/}L_)‘ Yo=0-9) g (25)
e

satisfied for:
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s = TRE Uu,_)z /,,,l= (I+v7,)-%°? (26)
e
where
e0 .
K =1+ 2(/-e)“{; m + ; m} (27)
© ® (28)
K;=['£—+ Z'Iz("e)jg; -;’,—4-!)2(!”"*")2' +7,=/ ;!}-+q“(+’7¢+l-e)’}

and € = 8/H ) 7]=H/ao .

'I
The slipstream boundary interference on the wing is expressed as a change in
angle of attack and stream velocity. These are calculated from the geometry

of Fig. 3 usi'ng Egs. (21-24), and employing the substitution from thin airfoil

theory, 7T = @, sy X = ZC; .
00
AR O M
2C, - T 8rw i 2 I )*
(A L 5+4 (2n-1-¢€)

x

E I 3 |
® + 2 z (29)
a ++40 Rn-1+e)* ;;‘p—ﬂ”(zﬂ) }
Aw I {S" 2n@Rn-1-¢)
»r - 4—7rl ' (402 (Rn-1-€)* -¥16]" + 492 (22-1-¢)*
M=

i 2n(2n-1+¢) o)
T L PR+ - 6] + 40 (2n-1ve)? ’

nsl
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wflo _ _ 1 i il !
V. C, - 8w 2n-l-¢ 2n-1+€ (31)

S - L § 4n*(22-1-€)" + 3/16
W T T 2w L (4 @ai-) - Y]t 40 el 0)*
% i 47"(211-/-/- é)z+3//6 (32)
= [‘7'ql(2n—l+e)z— 3//6]‘ + 4qz(27,,-/+e)‘

® 2
22 4n°2n)"+ 3/16
+ z z 2
~316|* +4n* 2
- [#n*n)*-3/16]" + 4n*(2n)
The results given by Egs. (25-32) can be used in conjunction with an
appropriate theory for a wing in a shear flow of infinite extent to predict the

two-dimensional slipstream boundary interference. This is done by noting that the

1lift can be expressed as

L =p/2 UZ”[@&‘) (o + 8)+ cL,] a2

where C'—s is the theoretical lift increment due to shear, camber, and thick-
ness, aai: is the theoretical 1lift curve slope, is the geometric angle

of attack, A« 1is the angle of attack correction given by Egs. (29) and (30),

and

Uzlcv, U02E+ 2 Z:”]

It follows that the corrected 1lift coefficient, CL , based on the velocity,
o

Uo , is given by the following quadratic equation

19




{2 aC, %oc\A/wz/LU)}q. {l}z :/\r] g A:\ 2(“”-'/0\ Kii:./\
(34)

+CLS+%‘-)A04_’,]-I} +E+z );l[(g Yo € H{5k C‘)Aa] =0

In Eq. (34) the subscript, 7° , denotes the corrections obtained from Eg. (30)

Lafle £t and EL

C, CL

or (32), and the terms,

y are obtained respectively from
*
Eq. (31) and (29).
Similarly the pitching moment can be resolved into a component independent

of 1ift and a component due to (, acting at the aerodynamic center,

L

M= g2 U™ C, +2., A2 U<l (35)

yielding the following for the pitching moment coefficient, CM , based
(-

upon the velocity, U, .

-, Y oy U,
B /*2 t) CM + a.C. # 2 /’) CM C
Uo > a.c. < C,_ ”.c. Lo ( 36)
where C and 4!0'5' are the theoretical moment coefficient about the

MO.C.

* It should be noted that Eq. (34) can be simplified considerably if the
boundary corrections are small. In this case the products of the corrections

can be neglected to yield

Cl—ﬁ(aa—%)llx [ac.. OHC ] |:+ 2((}»\ +2<’g/l/)€c,_ C, )’(ac,_ AMZ,
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aerodynamic center and the theoretical center of pressure position.

The slipstream boundary corrections given by Egs., (27-32) have been
calculated for typical slipstream heights on a high speed computing machine
using the first 100 terms, and are plotted in Fig. (4) through (9) as a func-
tion of the airfoil location in the slipstream. It should be noted that the
method of images does not apply in the limit of the airfoil located at the
boundary. Moreover, the models used in the image system are inapplicable in the
vicinity of the boundary.

Considering Figs.(6) and (7), it is seen that one effect of the boundary
is to cause a change in the slipstream velocity as the airfoil is moved off the
centerline. The effects of this change in velocity would appear as non-linear
airfoil characteristics. Considering a typical slipstream, the boundary inter-
ference causes a decrease in stream velocity and hence a loss in lift. This
effect is minimized at the slipstream centerline where the 1lift effect is zero
(Fig. 6) and only. the thickness effect (Fig. 7) enters. Since the lift effect
is asymmetric about the slipstream axis while the thickness effect is symmetric,
one could reduce this adverse effect to zero, or perhaps obtain a beneficial
interference effect by locating the airfoil below the slipstream axis. The
effect of decreasing the ratio of slipstream height to wing chord is to cause a
further loss in lift.

Figures 8 and 9 show that another effect of the slipstream boundary is
to adversely influence the 1ift by decreasing the wing angle of attack. This
effect is also more pronounced for small FU&> . At the slipstream axis, the
effect of wing thickness vanishes and the effect of wing lift is a minimum,

The thickness effect is asymmetric about the slipstream axis (Fig. 9) and the

1lift effect is symmetric (Fig. 8), suggesting that the two might cancel at

22
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Figure 5 STRENGTH OF THICKNESS IMAGE SYSTEM
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Figure 7 LONGITUDINAL DISTURBANCE VELOCITY DUE TO THICKNESS
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Figure 9 ANGLE OF ATTACK DUE TO THICKNESS
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certain positions below the slipstream axis and for certain angles of attack.
should be noted, however, that the thickness effect is usually smaller than the

1lift effect so that beneficial interference from the boundary is unlikely.
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EXPERIMENT

An experimental program of research is in progress at the Cornell Aero-
nautical Laboratory and is devoted to investigating the aerodynamics of airfoils
in non-uniform flows., The specific aim of this research is first to check the
theory for wings in uniform shear, and then to extend these results to the case
of two-dimensional and axially-symmetric slipstreams. The research on two-
dimensional airfoils in a flow with uniform shear and in simulated two-dimensional
slipstreams is largely completed, and the results are presented here.

The test flows used in this program were (1) a uniform flow, (2) a flow
with small uniform shear, (3) a two-dimensional propeller-type slipstream with
small shear and Sh) its equivalent uniform slipstream, (5) a two-dimensional
propeller-type slipstream with large shear and (6) its equivalent uniform slip-
stream. The equivalent uniform slipstream was defined as a two-dimensional slip-
stream of equal dimensions with a velocity equal to the average velocity in the
non-uniform slipstream. The momentum in the uniform and non-uniform slipstreams
were then roughly equivalent., These equivalent uniform slipstreams were included
in the present research in order to obtain a check on the image analysis and to
experimentally demonstrate the importance of shear in estimating section charac-
teristics.

13

The experiments were conducted out in the subsonic leg of the C,A.L.

One Foot High Speed Wind Tunnellu. This leg of the wind tunnel, shown in Fig. 10,
has 2 test section with a cross section of 17" x 24" and is operated as a closed
throat non-return type tunnel, The wind tunnel operates at atmospheric stagna-

tion pressure over a speed range of 0-180 f.p.s. The tunnel was modified for the

present program to provide a longer test section.

29




937 TTINNNL ANIM DINOSENS O

NOILD3S 1831

\_\\‘..

84nb14

43ENWYHI
ONITLL3S HS3INW

30



The test flows were generated by non-uniform screens or grids placed across the
wind tunnel test section upstream of the model. In effect these screens produce
the inverse of a propeller flow in that they remove energy from the free stream,
and distribute the energy within the slipstream by selectively introducing losses.
The advantages of this technique are that it affords a relatively simple method
for generating two-dimensional propeller-like slipstreams and the test flows are
easily repeated. Moreover, this technique can be used to generate axially-
symmetric slipstreams and allows the systematic study of slipstream flow non-
uniformities without the complication of the rotational flow component found in

a propeller slipstream.

In designing the screens for producing a uniform or non-uniform shear flow,
it must be noted that the static pressure immediately behind the screen is not
constant over the screen because non-uniform losses are being introduced. Conse-
quently, the flow expands from that at the screen to its final configuration, and
it is not possible to simply extrapolate the desired velocity distribution back
to the screen to determine the required screen losses.

15

Owen and Zienkiewicz ~ have considered the flow produced by a non-uniform
screen and present a method for designing screens to produce a uniform shear.
Their method is restricted to two-dimensional flows with a linear velocity
gradient and to screens which only slightly perturb the flow. The present re-
search is concerned with large non-uniform and discontinuous shear, and it was
necessary to extend the theory of Ref. 15 to include these cases. This extension
is presented in Appendix I.

This design method consists of postulating disturbance stream functions

associated with the non-uniform screen which vanish at large distances from the

screen, Further these disturbance functions are different on either side of
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the screen and equal at the screen, It is required that the longitudinal velocity
be continuous through the screen and that the vertical velocity change through

the screen by a factor related to the local resistance of the screen. These two
conditions then fix the screen disturbance stream function as a function of the
desired velocity distribution. The requirement that the static pressure be
uniform across the flow at large distances from the screen and that on any stream-
line the difference in total pressure be the local screen loss then relates the
desired velocity distribution to the distribution of screen resistance.

Having fixed the distribution of resistance, the screen design then re-
duces to selecting the screen solidity necessary to produce the losses. It is
assumed that the local losses in a non-uniform screen are identical to those of a
uniform screen with the same solidity, and existing experimental data and empirical
relationsl6 were used. In designing the screens it was decided to consider solid-
ities only in the range of 15%-85%. The lower limit was fixed by structural and
fabrication considerations, while the upper limit was selected to insure that the
screens would not choke. These limits then fixed the maximum shear that could be
generated. KExperience gained with the first screen tested indicated that the
available screen resistance data and empirical formulas were not applicable to
the non-uniform screens, apparently because of the high Reynolds numbers on the
screen elements. It was found that for large solidities the screen resistance
was greater than the published data., A series of experiments was made with high
solidity screens made of iarge diameter wire to determine the loss coefficient
at high Reynolds numbers. These results are compared in Fig. 11 with other data
and the empirical relations for low and high solidities., The C.A.L, data is seen

Ap _ (o )7'
plau* = -0 1

However, it was found that good agreement was obtained with the C.A.L. data and

to agree well with the high solidity relation,
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that from Ref. 17 using the relation,

Ap i c-%c°

Equation (37) was then used in all subsequent screen designs.

The three screens used in the present research, shown in Figs.1l2, 13 and
14, were constructed of 1/8" - 1/2" diameter bars spaced to provide the desired
solidity, and supported in a steel frame. ZEarly in the research it was found
that in the regions of high solidity the observed velocity distribution differed
markedly from the design value. This was gttributed to the screen phenomenon
investigated by wvon Bohllg. Immediately behind a screen the flow consists of
alternate wakes from each screen element and high velocity jets from between the
elements. At a sufficient distance from the screen, viscous mixing between the
jets and wakes has taken place so that a uniform flow is obtained. von Bohl
observed that at sufficiently high solidities, 37% - 46% for polygonal screen
elements, the jets tend to close around the wakes without mixing, resulting in
lower losses than anticipated.

It was concluded that this non-mixing phenomenon was occurring in the high
solidity portions of the screens used in this research, and the metal honeycomb
seen in Figs 12 through 14 was added to the downstream side of the screens. This
honeycomb, about two inches thick, locally constrains the flow behind the bars and
allows mixing to begin. The honeycomb is bonded to the downstream side of the
screen and also serves to stiffen the structure.

The uniform two-dimensional slipstreams were produced by using a uniform
screen with an opening in it, and constraining the slipstream flow with metal

plates. The gap size, screen resistance, and plate spacing were fixed by

3k
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elementary mass flow considerations.

The initial calibrations of the flows simulating two-dimensional slip-
streams showed that viscous mixing and the sharp change in static pressure along
the initial portions of the slipstream edges resulted in a flow which did not
meet with the design requirements. This difficulty was rectified by constrain-
ing the slipstreams with plates to a point about two airfoil chord lengths ahead
of the test position. These plates allowed the slipstreams and external "free
stream" to independently expand to the final design values,

A1l test flows were calibrated using a 3/16" diameter pitch-yaw pitot-
static probe. The calibrations for the five test flows are shown in Figs. 12,
13, and 14, These data are not corrected for the shear flow displacement
effect, The theory of Hall19 shows that for the 3/16" diameter probe used in
this research, the displacement of the stagnation point is less than 1/2% of the
slipstream half-height and is negligible. The same theory shows, however, that
the effect of shear on the probe is to distort the pressure distribution on the
probe so that the usual pitch-yaw pressure probe will indicate flow angularity
at zero angle of attack. This effect was negligibly small for the experiments
in small shear, but amounted to a flow angularity error of about 1° for a shear
rate of k & 3 . The flow angularity data were corrected for this effect
using Hall's theory.

The model used in this research was a two-dimensional Joukowsky airfoil of
17% thickness spanning the wind tunnel (Fig. 15 and 16). Anticipating future
tests in an axially symmetric slipstream, the wing was constructed and instru-
mented to measure forces on a narrow section (a span of about 10% of the chord)
of the wing at the midspan. A conventional three-component strain gage balance

was used to measure the section lift, drag, and pitching moment. After assembly,
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the entire wing was wrapped with 005" thick sheet rubber to prevent flow between
the sections of the wing. The balance system was then calibrated with the sheet
rubber in place,

The model was mounted in the wind tunnel on a yoke support (Fig. 16) on
a conventional pitching system and was pitched about the airfoil midchord. The
gaps between the wing edges and the wind tunnel walls were sealed with Insulite
plastic foam. As shown in Fig. 16, provisions were made to bleed the tunnel side
wall boundary layer in order“to alleviate early wall boundary layer separation
and its subsequent effects on the wing. The exact distribution of the wall
porosity and suction settings were experimentally determined to maintain two-
dimensional flow on the wing.

The experiments consisted of measuring the 1lift, drag, and pitching moment
on the airfoil in uniform shear and at various vertical positions in the uniform
and non-uniform two-dimensional slipstreams. In addition oil-film studies were

made for certain conditions to investigate the boundary layer separation pattern.
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RESULTS

Uniform Shear

The first of the experiments was to test the symmetric airfoil in uniform
flow and in uniform shear flow (Fig. 9) in order to obtain a check on the theory
for airfoils in uniform shear flow. These tests were run at an airspeed of
100 m.p.h. at the airfoil position, and the Reyno;ds number based on the airfoil
chord was 4.5 x 105. Thé data were corrected using the conventional solid
boundary corrections. It can be shown that for uniform shear flow in a wind tunnel,
the solid boundary corrections apply. The lift and pitching moment data from these
experiments are shown by the symbols in Fig. 17 and are compared with the appro-
priate theory. These data are referred to the undisturbed stream velocity at the
airfoil position. The theory is seen to overestimate the slope of both the lift
curve and the moment curve. This might be anticipated since Tsien's theory for
airfoils in uniform shear flow reduces, in the limit of zero shear, to the
classical thick airfoil theory including the thickness correction to the 1lift and
moment curve slope. In other uniform flow experiments, a thickness effect on the
slopes of the lift and moment curve has been observed, but of a magnitude less
than that predicted by theory. This reduction in lift curve slope, presumably
due to viscous effects, also occurs in shear flow.

The increments in 1ift and moment due to shear have been determined by
fairing the experimental data and subtracting the 1lift and moment measured in
uniform flow. This shear increment is plotted and compared with Tsien's theory
at the bottom of Fig. 17. It can be seen that the theory and experiment are
in good agreement at small angles of attack where the separation effects are

small, thereby confirming the theory.
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The drag measured on the airfoil in uniform flow and uniform shear flow is
presented in Fig. 18. Considering the uniform flow data, it is seen that the
drag coefficient at zero lift is CD 2~ .0075 which is in good agreement with
flat plate laminar skin friction theory when adjusted for thickness effects.

The data obtained in uniform shear flow indicate a drag coefficient of about

C

shows that there is no drag due to lift for two-dimensional sections in uniform

B ~ .002; much less than predicted by laminar theory. Tsien's theory
shear flow, so that the observed drag reduction in shear flow must stem from an
effect on skin friction.

The effects of shear on flat plate laminar skin friction have been recently

20’21, by Glauertzz, and by Ting23

investigated by Li , and it is demonstrated that
the effect of positive shear is to cause an increase in laminar skin friction.
Applying these results to the present research, one would expect the drag on the
airfoil upper surface to be increased by about 3%, but the drag on the lower sur-
face would be decreased a comparable amount since it is in negative shear. Hence,
the theory shows no net change in drag on the airfoil.

It is believed that the observed drag behavior is associated with the method
used in gene?ating the shear flow. In particular, the flow is generated by a
screen composed of thick bars which introduce turbulence into the stream. It
appears that this turbulence is such as to cause a marked decrease in viscous
drag. As a check on this hypothesis, the airfoil was tested in a stream with a
uniform high solidity screen at the normal position of the shear screen. This
uniform screen was constructed of 1/16" diameter wire, crudely corresponding to
the elements of a shear screen, and only introduced turbulence in the stream.

The drag data obtained under these conditions was about half that obtained in a

uniform flow without artificial turbulence, and showed that screen-induced
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turbulence is primarily responsible for the low drags observed in shear flow.

Slipstream with Large Shear

Following this confirmation of uniform shear theory, a series of experiments
was made with the symmetric Joukowsky airfoil in the Kk = 2 two-dimensional
slipstream (Fig. 14), These experiments consisted of measuring the forces on
the model at four positions in the slipstream, and the results are shown in
Fig. 19. The force and moment coefficients are based upon the undisturbed stream
velocity at the airfoil position and have been corrected for tunnel wall inter-
ference using the results of Appendix II. The drag data are not presented because
they reflect the unusual influence of screen-induced turbulence.

The experimental data are compared in Fig. 19 with Jones®' theoretical
results for airfoils in non-uniform shear flow and with Tsien's results for
airfoils in uniform shear flow, Considering the data obtained on the slipstream
plane of symmetry (Fig. 19a), it can be seen that the slipstream boundary correc-
tions bring the theory and experiment into rather good agreement. Indeed, the
agreement is quite surprising since Jones® theory is valid only for small values
of the stream shear derivative, ?, , while the experimental slipstream corres-
ponded to a value of } & 1l.7. The non-zero lift observed at gzero angle of
attack reflects the fact that the airfoil was not located precisely on the plane
of symmetry. This lift increment at zero angle of attack is analogous to that
observed with éirfoils in uniform shear flow and should be proportional to the
airfoil thickness.: This thickness effect is not predicted by Jones, apparently
because his analysis is restricted to thin airfoils and small values of the shear
parameter, 7« , and products of the thickness and ?, were neglected,

The most notable feature of the data in Fig. 19a is that a 1lift coefficient

in excess of 3.0 was measured without any apparent signs of airfoil stalling.
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This is substantiated by the moment data which shows there was no unusual motion
of the center of pressure characteristic of a spreading region of boundary layer
separation. This result is viewed with some reservations since it is recognized
that unusual boundary layer separation patterns might be influencing the data.
No boundary layer observations were made during this test; however, during the
experiments in uniform shear flow, oil film techniques were employed to observe
the separation patterns. A typical result is shown in Fig. 20. In this experi-
ment the oil, colored with lamp black, was introduced from the trailing edge so
that the oil was confined to the separated regions. One characteristic of the
separation process was the formation of strong vortices standing normal to the
surface; the dark regions in photograph. Under certain conditions a pair of
these vortices would stand on either side of the instrumented section and ener-
gize the flow over the section to locally delay separation. It is not clear if
this occurred with the data in Fig. 19a, so the extreme maximum 1lift coefficients
must be substantiated with more detailed experiments.‘ It is noted, however,
that a similar result was obtained by Brenckmanal+ in experiments with a two-
dimensional wing in a propeller slipstream. His results, obtained on the
propeller centerline, showed a "destalling effect" both within the slipstream
and exterior to the slipstream; that is, the maximum lift coefficent with a
slipstream was about 20% more than in a comparable uniform stream.

The data obtained at éyqq = .23 are compared with both uniform and non-

* Subsequent experiments with the airfoil near the slipstream plane of symmetry
and employing boundary layer visualization techniques have confirmed the ob-
served maximum lift and have shown that separation was acceptably two-dimen-

sional., These results will be covered in a forthcoming report,

51

U |




MOTd YVIHS WYO4INN NI

NOILVYVd3IS ¥Y3AVT AYVANNOS

0

z 94nb14

~
wn



uniform shear theory in Fig., 19b. The importance of two-dimensional slipstream
boundary interference on airfoil 1ift can be seen by comparing Tsien's theory
with and without the boundary correction. The boundary correction causes about
a 30% loss in lift. Comparing the corrected Tsien's theory with the data, the
theory underestimates both the 1lift curve slope and the angle of attack for zero
lift. It appears that even though the shear is quite constant at this location,
Tsien's uniform shear theory is inapplicable because of the close proximity of
the region of non-uniform shear. The airfoil lower surface is within a quarter
airfoil thickness of the slipstream center-plane and is influenced by the non-
uniform shear. Jones' non-uniform shear theory would be applicable if the shear
were smaller and if the theory included the effect associated with thickness and
shear. On the basis of Tsien's exact theory for uniform shear and Jones' theory
for an ellipse in non-uniform shear8 one might anticipate that if this term were

included in Jones thin airfoil theory, it would predict a 1lift increment given by

s q e .
AC, = < k, ¥ » and a moment increment given by AC,y = 37‘—7;- k, v , where
k is the local shear. These increments have been added to Jones' thin

L
airfoil theory and are compared with the data in Fig,., 19b, It can be seen that

this modified Jones theory is in fair agreement over a large angle of attack
range, and yields better predictions than does uniform shear theory for both 1lift
and moment.

The pitching moment data in Fig. 19b suggest that the airfoil is in the
process of stalling since the center of pressure has begun to move. This is borne
out by the lift data which has reached a near maximum value of (}L ~ 1.4,

This behavior is contrasted with the data of Fig. 19a which shows twice the 1lift
at the same angle of attack with no sign of impending stall.

The 1lift and moment data for the airfoil about midway out in the slipstream
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( 67“4 = .52) are compared with the uniform shear and the modified non-uniform
shear theories in Fig. 19c. Comparing the uniform shear theory with and without
the boundary correction, it is seen that the influence of the slipstream boundary
is to cause a 50% loss in 1lift. Again the modified non-uniform shear theory with
a boundary correction agrees well with the data, though it overestimates the 1lift
curve slope. This same theory yields a good prediction of the airfoil center of
pressure, as indicated by the slope of the moment curve, but overestimates the
pitching moment at zero 1lift. At this position it is seen that the airfoil is
approaching stall with a maximum 1ift coefficient of C, a4 0.9.

The two-dimensional airfoil characteristics at éD/H = .78, Fig. 194, are
quite similar to those at the other positions in the slipstream except that they
are more pronounced. In this case the slipstream boundary proximity causes a
65% loss in 1ift and results in markedly non-linear effects. Both the uniform
shear theory and the modified non-uniform shear theory predict the l1ift charac-
teristics with about equal precision after the boundary correction is applied.
The latter theory is more accurate for moment predictions, though it still over-
estimates the pitching moment at zero 1lift. Also in this instance the airfoil is
perhaps beginning to stall at the highest test angles of attack, as suggested by
the moment data.

To summarize, the experiments in a two-dimensional slipstream reveal that
there is a profound effect of the boundary interference. In these experiments
where the slipstream height was one chord length, the effect of the boundary
interference is to cause a 30% ~ 65% loss in 1ift, depending on the airfoil loca-
tion in the slipstream. This adverse effect is predicted by the slipstream
boundary analysis in Section I.

The effects of slipstream shear on airfoil characteristics are to cause




an increase in lift and moment slope, and to cause a non-zero lift and moment at
zero angle of attack., These are observed in the experiments, and it is found
that because the experimental slipstream was a non-uniform shear flow, the air-
foil characteristics are best predicted by a modified version of Jones' non-
uniform shear theory. The modification consisted of adding the 1lift and moment
increment due to shear'predicted by uniform shear theory.

With the airfoil at the center of the two-dimensional slipstream, it is
found that 1ift coefficients in excess of 3.0 are realized, with no apparent
signs of stalling. This might be attributed to the peculiarities associated with
the experiment, such as unusual three-dimensional boundary layer separation
patterns causing locally high 1lift coefficients. Also it is recognized that
the turbulence introduced by the shear screens cause alterations in the boundary
layer so that very small viscous drags are observed. This might also influence
the boundary layer separation. However, if this were the cause, the same high
lift coefficients should be observed at other positions in the slipstream. On
the contrary, rather clear indications of impending stall were observed. This
leads to the conclusion that boundary layer separation is being influenced by
the local flow, and suggests that the derivative of the shear exerts a benefi-
cial influence on separation.

Uniform Slipstream

Experiments were made with the symmetrical Joukowsky airfoil in a uniform
two-dimensional slipstream in order to have an experimental check on the influence
of shear and to have a check on the accuracy of the image analysis for predicting
the influence of boundary interference. The velocity calibration of this uniform
slipstream is shown in Fig. 14. The data have been corrected for tunnel wall

interference and are presented in Fig, 21. The coefficients are based on slip-
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stream velocity. It will be noted that all of the lift data in Fig. 21 show an
abrupt loss in lift in the vicinity of o = 3°, and the moment curves show a
slight change in slope at this point. It appears that this stems from a change
in the boundary layer, such as the sudden appearance of a leading edge separation
bubbleas. A separation bubble was observed on the airfoil at higher angles of
attack.

The data shown by the flagged symbols are those obtained with the tunnel
side wall boundary layer bleed inoperative. The difference between the two sets
of data then indicates the magnitude of the error caused by the side wall suction;
an increase of about .02. The theory shown is that of Ref. 4 for zero shear; that
is classical two-dimensional Joukowsky airfoil theory.

The 1ift data obtained with no sidewall suction are seen to be, for small
angles of attack, in excellent agreement with the theory when corrected for slip-
stream boundary interference. The lack of agreement at higher angles might be
due to the boundary layer changes occurring at of 22 3°. Hewever, one would
expect the experimental 1ift curve slope to be less than the theoretical on the
basis of the results obtained in uniform flow (Fig. 17). The good correlation
at zero 1lift demonstrates the accuracy of calculating the slipstream boundary
interference stemming from airfoil thickness by using source and sink images.,

The moment data obtained with the tunnel boundary layer bleed inoperative
are not shown. These data fall on the same curve with the presented data, and
only demonstrate that the distribution of sidewall suction (Fig. 16) was correct.
These data show that the center of pressure is further aft than predicted by
theory. Or alternatively, the experimental slope of the moment curve plotted
against angle of attack is smaller than predicted. This observation is in

keeping with the data obtained in uniform flow.
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It is significant to note in Fig. 21, that in all cases, the moment data
indicate impending stall at the highest angle of attack. Moreover, the data
suggest that in a uniform slipstream the maximum 1ift coefficient would be quite
insensitive to airfoil position in the slipstream. This is in contrast to the
data obtained in the non-uniform slipstream (Fig. 19) which show that the max-
imum 1ift coefficient is markedly influenced by position, shear, or the derivative
of the shear,

Influence of Slipstream Velocity

The symmetrical airfoil was tested at one position in the slipstream with
small shear and at the same position in the equivalent uniform slipstream (Fig. 13).
The purpose of these experiments was to obtain a check with the theory for a case
with a larger ratio of slipstream to free stream velocity. In the other case this
ratio was about 2 whereas the ratio is about 4 for the slipstreams of Fig. 13.
The 1ift and moment data obtained in these two slipstreams are compared with the
appropriate theory in Fig. 22 and 23. The data in Fig. 22 are seen to agree well
with uniform shear theory, corrected for slipstream boundary interference, over
much of the angle of attack range. Judging from the moment data, the progressive
lack of agreement at high angles of attack isvdue to the approaching stall.

The 1ift data obtained in the equivalent uniform slipstream, Fig. 23, are
in fair agreement with the theory. The theory, corrected for slipstream boundary
interference, predicts the angle of attack for zero lift of about o« xz %°, while
the data shows an angle of about %°. It appears that in this instance either the
data are in error or the effect of airfoil thickness on boundary interference is
overestimated. The former seems more likely in view of the correlation obtained
in Fig. 21.

One question that occurs when considering the influence of shear on airfeoil

characteristics is the determination of where in the slipstream the airfoil should
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be located to obtain the largest 1ift. The data in Fig. 19 do not yield any direct
answer to this question since the coefficients are based on local velocity. These
data have beer referred to the average slipstream velocity so that a comparison
gives a direct indication of 1lift at the various positions in the slipstream.

These data are presented in Fig. 24. This comparison shows that, for large angle
of attack, the most desirable locations are either near the slipstream plane of
symmetry. However, the airfoil showed no indications of stall at the latter

position so that no firm conclusion can be reached.
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CONCLUSIONS

The available literature on the two-dimensional problem of airfoils in

7,8

uniform shear and non-uniform shear show that there are two effects of shear

on airfoil characteristics. The theories retaining terms involving both airfoil

4,6,8

thickness and shear show that there is an overall increase in 1ift and pitch-
ing moment in proportion to the local shear and the airfoil thickness and camber.
For uniform shear the applicable theory also predicts a small increase in the slope
of the 1lift and moment curves due to shear. Jones theory for thin airfoils in non-
uniform shear7 neglects products of the airfoil thickness and shear, and no overall
increase in 1lift and moment is predicted. However, he does predict an increase in
the slope of the 1lift and moment curves in proportion to the derivative of the
shear.

The experiments made in simulated non-uniform propeller slipstreams quanti-
tatively substantiate these theoretical results when the theories are corrected
for slipstream boundary interference on the airfoil. It is found that the cor-
rected uniform shear theory yields accurate predictions of the airfoil character-
istics if the local slipstream shear is fairly uniform and if the airfoil is
about 1/4 -~ 3/8 chord lengths from the slipstream plane of symmetry. The theory
for thin airfoils in non-uniform shear flow is restricted to slipstreams with
small changes in shear, while the experiments included large changes in shear.
In spite of this, theory and experiment are in good agreement for those slip-
stream regions where the shear is small but the derivative of shear is large.
When the shear too is large, it is found that by adding the 1lift and moment in-

crement predicted by uniform shear theory to the non-uniform shear result, this

modified theory yields good estimates of the airfoil characteristics. This
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v modified theory should be used with considerable caution, pending theoretical
verification of its validity.

In the experiments in a simulat;d two-dimensional slipstream, 1lift co-
efficients in excess of 3.0 were realized with the symmetrical airfoil in the
immediate vicinity of the slipstream plane of symmetry. This result is in
qualitative agreement with Brenckman's result, and suggests that when the deri-

*
vative of shear is large, boundary layer separation is delayed.

Subsequent experiments with the airfoil at various locations close to the slip-
stream plane of symmetry have confirmed this result and showed that no unusual
boundary separation occurred. In these experiments, the maximum lift was

obtained with the airfoil slightly below the plane of symmetry. These results

will be published in a forthcoming report.
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APPENDIX I

The Production of a Specified Two-Dimensional Shear Flow
by a Non-Uniform Screen

In order to determine the aerodynamic characteristics of airfoils in shear
flow, it is necessary to produce a prescribed non-uniform flow in a wind tunnel
with large rates of shear. As demonstrated by Owen and Zienkiewiczl5, this can
be accomplished using screens or grids with the proper distribution of resistance
mounted upstream of the test region. They present a method for designing screens
to produce a known flow with a linear velocity gradient, subject to the restriction
that the screen only slightly perturbs the flow. The present work is essentially
an extension of the theory of Ref. 15 to allow for non-linear velocity gradients
and to include large perturbations from the screen.

The model used is an initially uniform constant area channel flow (Station O

in Fig. I-1) which' subsequently passes through a non-uniform screen, Stations 1 and

2, and expands to its final configuration for a downstream at Station 3.

—=Us(y)

L

Figure I-1  CHANNEL FLOW THROUGH A SCREEN
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Stations 1 and 2 refer to the upstream side and the downstream side of the screen,

respectively. Using the nomenclature shown in Fig. I-1, the final velocity distri-

bution at Station 3 can be considered to be the uniform stream velocity with a per-

turbation velocity added,

Usly) = Uy + 4y ()

Introducing the stream function, the boundary conditions to be satisfied are:

(1)

(2)

(3)

(4)

(5)

The transverse velocity component is zero at the channel wall

55} = G2,

The longitudinal velocity component is continuous through the screen

CIANNT 3

a’y ®:z-0 97 %2 40

The transverse velocity component changes by a factor, /9 in

-

passing through the screen

Y
(_aa_'xux,s-o (a¢ 2= +0

On any streamline, the change in total pressure between Stations O
and 3 is equal to the local resistance of the screen at the point
where it is pierced by the streamline.

At Station 3 the static pressure is constant across the channel.

It is assumed that the fluid is inviscid and incompressible, and that the

desired velocity distribution can be represented by a Fourier series. Further,

The local pressure drop through the screen is taken to be a function only of the

local velocity ahead of the screen,

2 2
P P2 _ <?ﬂ +‘41/>
Al up AT =
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and it is assumed that Taylor and Batchelor's refraction coefficient2 for uniform

screens applies for non-uniform screens
= L1 (1-2)
7/+K

where K is the local screen resistance.

The first boundary condition is satisfied by the following form for the

stream function.

£e0 Yoty iy Ay s ) (1-3)
n=|

L) &
£ =0 W(i,y): u,’y’+f10;(7)d7+ do//r;Bne n””ﬂu}m nﬂ'-}r-) (I-4)

where ‘An and £3n are arbitrary coefficients to be determined by application of

the boundary conditions. Defining

¥
fw,(y)dy =l H,icnm oy -,;,L) Ga2)

n=l r

and applying the second boundary condition to Eq. (I-3) - (I-5), the result is

Z n A, co¥ n#%—) = "Z’ncnw mr%)qr-;n anﬁz »’;’f}

ne/

A, = B,+Cy S

Applying the third boundary condition to Eq. (I-3) - (I-4), another relation

between the unknown coefficients is obtained.
a0

;nAnM@W%>=—é;anM@ﬁ%> 1)
Ap = -'/‘% B,

Combining Eq. (I-6) and (I-7), we obtain the unknown Fourier coefficients in terms

of the coefficients fixing the desired velocity distribution and the parameter
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defining the local screen resistance.

= ._C_L (1-8)
g 1+8

- - 3
B, = 1+8 (™ (1-9)

Equations (I-8) and (I-9) provide the means for fixing the local screen
resistance in terms of the parameters defining the final velocity distribution
if it can be assumed that the streamlines are, for practical purposes, straight

downstream of the screen. This might be a valid assumption for small values of
oy ('V)
ao
meter, and consideration must be given to the streamline curvature. A streamline

. However, the present formulation is for large values of this para-

is defined by V’@%?’) = Const. , and the deflection of the streamline between

the screen and downstream infinity (Station 3) is determined by the general rela-

()0(0, 7&-) = W(d’, 7:)

tion,

where 1’5 and %f3 respectively denote the vertical position of the streamline
at the screen and at infinity. Applying this to Eq. (I-4), the equation for the

streamline becomes

4oty [ ey My 28 S ol )

= Uo iy +£h,w',(7)dry«

Substituting Eq. (I-5) in this result, the final equation for the streamline de-

(I-10)

flection is

L A3 ¢ 2}
724.#5.[' __—“'27) ¢7=%+f —LY—”Z() Ay (1-11)
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Along any streamline either upstream or downstream of the screen, the total pressure
is conserved, and all losses occur at the screen. This requires that upstream of
the grid
. 2 £ ¢ 2 2 (1-12)
Ho € X £ ¥, f',+—2—ao-f7+—z-(a,+m;)

and downstream of the screen along the streamline defined by EQ. (1-11),

¥, £ ¥ < 73 + G [Uor )]

= puta) v S [l ) #os” Gy

Subtracting Eq. (I-13) from Eq. (I-12) and noting that &,= Uy 5 43 =;§-4q,;

(1-13)

the loss in total pressure through the screen is given by

3 s 2 . 2
7 f’i ’ P )°'3‘ i E *“"fv(‘f’s)] 'y / ,26 _C,,_) (I-14)
pl2 e A2« “, A U,

Now the static pressure at infinity upstream and downstream is uniform across the
channel, and the difference in static pressure between these two stations is the

average screen loss. Denoting this average loss and the local loss as ]E and

K

Q=L P Ve ik
A2 ut P/2 («)+#,7)

the equation for the local screen losses follow from Eq. (I-14).

©® 4"_21] =E”_|z 6‘:)-]2 ///3) {I-15)

At this point it is convenient to introduce the dimensionless variables,

=%, = %/t g, = Y3/ Hr
7z=/+w—¢(h)— 7;=[+_a_l%ﬁ

W,
ol 18 m
A @
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The longitudinal velocity at the screen is obtained from Eq. (I-3) and (I-5) as

Wi |+ / %(?‘z) _ /*/l
u, ~ 1+8 «, EY.]

(1-16)

After some manipulafion Eq. (I-15) reduces to

2 2 )
K(/g?/i/)g;.’: ] =K+1-% ‘% = (1-17)

Finally introducing Eq. (I-2), the equation for the local screen resistance

becomes

2

CF* 7 -K-2)p" - 2(1+K +4,- %)l (0.21- 77+ 1-rk)p
(1-18)
+(@427)B+121(F+y") =0

The function, F?(Cz) , may be computed by differentiating Eq. (I-4) and

using Eq. (I-9) to obtain

Fe,)= 7> nCysim(anE,) (1-19)
n=1

The coefficients, C , may be computed from the prescribed velocity distri-

n

bution using Eq. (I-5). By the usual rules of Fourier analysis, the coefficients

are

C, = Zf'd( f;[/(t)—l] i Gt

(1-20)

It is convenient also to express Eq. (I-11l) in dimensionless form.

%2 3
gz.;._/*_/ﬁj‘ [?/(t)-[]dt = ga-l-S; B/(t)—/] at (I-21)

73




Equation (I-17) - (I-21) are the basic equations for the design of a screen
to produce any desired velocity distribution. The method of application used in the

present research is to compute the coefficients, C s for the prescribed velocity

7
distribution, 7; , using Eq. (I-20). Then for each value of the screen coordinate ,‘
Qz s the corresponding value of the function, F(Cz) » is calculated using

Eq. (I-19). Now in the final flow, there will be a maximum value of the velocity
distribution, 7; , at the flow coordinate, G, « The maximum allowable value

of /5 (/5,”” ~ 1.0) is assigned at this point and corresponds to the minimum
local screen resistance that can be tolerated. Using this value of /6,”“' and

;a in Eq. (I-21), the corresponding value of the screen coordinate, Qz y is
calculated. These values of 4, > €%, T,» 74 » 7y and F@')), are then used

in Eq. (I-17) to solve for the average screen resistance, K :

With the average screen resistance, 4? s, S0 determined by the minimum screen
resistance, one can then proceed to calculate the local screen resistance as a
function of the prescribed velocity distribution and the screen coordinate, ¢2 .
The method used is to start at any convenient value of the screen coordinate and
to solve Eq. (I-17) and (I-21) simultaneously for the corresponding screen resis-
tance parameter, /3 , and the flow coordinate, ;'3 . The technique used for

this simultaneous solution depends on the type of prescribed velocity distribution.
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APPENDIX II

Two-Dimensional Wind Tunnel Wall Corrections for Non-Uniform Streams

One aspect of this experimental research was concerned with the proper appli-
cation of corrections to the data to account for the influence of the wind tunnel
walls. The usual boundary corrections, such as those given by H. Glauert27, are
obtained using the method of images. This calculation consists of determining
the disturbance velocities from the model at the position of the wall, and then
postulating an array of images which will just cancel these lateral disturbance
velocities at the wall position. This image array then satisfies the necessary
boundary conditions and can be used to calculate the disturbance velocities from
the wall at the model position.

The equivalent calculation can be made for two-dimensional models in two-
dimensional non-uniform flows using the techniques described in the Theory Section.
In particular, it was shown for uniform shear, that to the first order in thickness
and angle of attack, the flow non-uniformity does not enter the problem directly
except through the boundary condition at the slipstream boundary. Hence the
problem could be reduced to a uniform flow problem with different boundary condi-
tions. An image analysis was made to predict the influence of the slipstream
boundary on the airfoil characteristics, and consisted of satisfying flow and
pressure continuously at the slipstream boundary.

Now the presence of the solid wind tunnel walls in the problém is to intro-
duce an additional disturbance at the outer edge of the slipstream boundary (see
Fig. 3b). Through the continuity requirements, this implies an additional dis-
turbance velocity within the slipstream. This disturbance velocity can be cal-

culated by changing the image array of Fig. 3 slightly. The 2) —array (Fig. 3c)

7o




remains unchanged since this array still satisfies the slipstream boundary
conditions. However, the magnitude of the parameter, 3/ s will change. The
equivalent airfoil duplicating the disturbance velocities exterior to the slipstream
is replaced with an array of airfoils with a 1lift of Y'L y and this array is
such that there is no flow through the wind tunnel walls. (Fig. II-1). The effect
of the walls on the model is obtained by satisfying flow and pressure continuity
at the slipstream boundary, thereby fixing the magnitude of the parameter, » g
in terms of the ' image array.

It can be seen in Fig. II-1 that this array satisfies the condition that
there be no flow through the wall, and can be used to calculate the wall distur-
bance velocities exterior to the slipstream. Referring also to Fig. 3, the

boundary conditions to be satisfied at the slipstream boundary are

= —2 wo Uy = ary U (II-1)

Neglecting the details of the development, it can be shown that if the airfoil

thickness effects are negligible, these conditions are satisfied for

|- K, (U%')z

4 = L
Ly I+ K K, (g_e')z (II-2)
), = Z—': % (II-3)
where the subscript, «w~ , refers to solid wall correction, P<' is given
by Eq. (27), and K, ana C are given by
Ky = ;ig (II-4)
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n 2 2 [[e%= l @ !
8= (&) 0-o ,,L, TR P Oy ey

l 2 |
B e Bn+£-(l-e)]z} (11-5)

nsl

el S ' - '
C= ‘5'(/ 6);{(471_2)_%(“_5) @.n,z)-l-%([-pc) (11-6)

! g [
4n - L(1-¢) 4n+t L (1-9

where &) = Hr %, . The series in Egs. II-5 and II-6 have been evaluated on a

high speed computing machine for repreéentative values of q, W a_pd € re-
taining the first 100 terms in the series. Ther- calculated values of Kz are
plotted in Fig. II-2.

The disturbance velocities at the model can now be calculated using the
image array of Fig. 3c, noting that the parameter, . .‘;..)l-w y, fixes the image
strength. The results are those given by Eq. (29) and (31). It can be seen then

that the influence of the solid walls enters only through the parameter fixing

the image strength and the wall corrections are

C 5 '
Ao = - z= (’)'-w_g"){mzl Va +4nt(2n-1-e"

o (11-7)
1 l
+ :%—' I/4 +4-q2(27!—/+€)" i ZMZI V4 +4’l2(2n)2}
wy =~ Cip ) S = ' (11-8)
U: - ‘8”'] (Jl.w QL)E 271"""5 27!"/"'5 }

These corrections can be obtained from Figs. 6 and 8 by substituting the quantity,

o — ) for 3, in the figures.
w

L J L
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